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Australopithecus sediba: A New
Species of Homo-Like Australopith
from South Africa
Lee R. Berger,1,2* Darryl J. de Ruiter,3,1 Steven E. Churchill,4,1 Peter Schmid,5,1
Kristian J. Carlson,1,6 Paul H. G. M. Dirks,2,7 Job M. Kibii1

Despite a rich African Plio-Pleistocene hominin fossil record, the ancestry of Homo and its relation
to earlier australopithecines remain unresolved. Here we report on two partial skeletons with an
age of 1.95 to 1.78 million years. The fossils were encased in cave deposits at the Malapa site in
South Africa. The skeletons were found close together and are directly associated with craniodental
remains. Together they represent a new species of Australopithecus that is probably descended
from Australopithecus africanus. Combined craniodental and postcranial evidence demonstrates
that this new species shares more derived features with early Homo than any other australopith
species and thus might help reveal the ancestor of that genus.

The origin of the genus Homo is widely
debated, with several candidate ancestors
being proposed in the genus Australopith-

ecus (1–3) or perhaps Kenyanthropus (4). The
earliest occurrence of fossils attributed to Homo
(H. aff.H. habilis) at 2.33 million years ago (Ma)
in Ethiopia (5) makes it temporally antecedent to
all other known species of the genus Homo.
Within early Homo, the hypodigms and phylo-
genetic relationships between H. habilis and
another early species, H. rudolfensis, remain
unresolved (6–8), and the placement of these
species within Homo has been challenged (9).
H. habilis is generally thought to be the ancestor
of H. erectus (10–13), although this might be
questioned on the basis of the considerable
temporal overlap that existed between them
(14). The identity of the direct ancestor of the
genusHomo, and thus its link to earlier Australo-
pithecus, remains controversial. Herewe describe
two recently discovered, directly associated, par-
tially articulated Australopithecus skeletons from
the Malapa site in South Africa, which allow us
to investigate several competing hypotheses re-
garding the ancestry of Homo. These skeletons
cannot be accommodated within any existing
fossil taxon; thus, we establish a new species,
Australopithecus sediba, on the basis of a com-

bination of primitive and derived characters of the
cranium and postcranium.

The following is a description of Au. sediba:
Order Primates Linnaeus 1758; suborder Anthro-
poidea Mivart 1864; superfamily Hominoidea
Gray 1825; family Hominidae Gray 1825; genus
Australopithecus DART 1925; species Australo-
pithecus sediba sp. nov.

Etymology. The word sediba means “foun-
tain” or “wellspring” in the seSotho language.

Holotype and paratype. Malapa Hominin
1 (MH1) is a juvenile individual represented by
a partial cranium, fragmented mandible, and par-
tial postcranial skeleton that we designate as
the species holotype [Figs. 1 and 2, supporting
online material (SOM) text S1, figs. S1 and S2,
and table S1]. The first hominin specimen re-
covered from Malapa was the right clavicle of
MH1 (UW88-1), discovered by Matthew Berger
on 15 August 2008. MH2 is an adult individual
represented by isolated maxillary teeth, a partial
mandible, and partial postcranial skeleton that we
designate as the species paratype. AlthoughMH1
is a juvenile, the second molars are already
erupted and in occlusion. Using either a human
or an ape model, this indicates that MH1 had
probably attained at least 95% of adult brain size
(15). Although additional growth would have
occurred in the skull and skeleton of this
individual, we judge that it would not have
appreciably altered the morphology on which
this diagnosis is based.

Locality. The two Au. sediba type skeletons
were recovered from the Malapa site (meaning
“homestead” in seSotho), situated roughly 15 km
NNE of the well-known sites of Sterkfontein,
Swartkrans, and Kromdraai in Gauteng Province,
South Africa. Detailed information regarding
geology and dating of the site is in (16).
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Fig. 1. Craniodental elements of Au. sediba. UW88-50 (MH1) juvenile cranium in (A) superior, (B)
frontal, and (C) left lateral views. (D) UW88-8 (MH1) juvenile mandible in right lateral view, (E)
UW88-54 (MH2) adult mandible in right lateral view, (F) UW88-8 mandible in occlusal view, (G)
UW 88-54 mandible in occlusal view, and (H) UW 88-50 right maxilla in occlusal view (scale bars
are in centimeters).
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Diagnosis. Au. sediba can be distinguished
from other species of Australopithecus by a
combination of characters presented in Table 1;
comparative cranial measures are presented in
Table 2. A number of derived characters separate
Au. sediba from the older chronospecies Au.
anamensis and Au. afarensis. Au. sediba exhibits
neither the extreme megadontia, extensive cra-
nial cresting, nor facial prognathism of Au. garhi.
The suite of derived features characterizing
Au. aethiopicus, Au. boisei, and Au. robustus,
in particular the pronounced cranial muscle mark-
ings, derived facial morphology, mandibular
corpus robusticity, and postcanine megadontia,
are absent in Au. sediba. The closest morpholog-
ical comparison for Au. sediba is Au. africanus,
as these taxa share numerous similarities in the
cranial vault, facial skeleton, mandible, and
teeth (Table 1). Nevertheless, Au. sediba can be
readily differentiated from Au. africanus on
both craniodental and postcranial evidence.
Among the more notable differences, we ob-
serve that although the cranium is small, the
vault is relatively transversely expanded with
vertically oriented parietal walls and widely
spaced temporal lines; the face lacks the pro-

nounced, flaring zygomatics of Au. africanus;
the arrangement of the supraorbital torus, naso-
alveolar region, infraorbital region, and zy-
gomatics result in a derived facial mask; the
mandibular symphysis is vertically oriented with
a slight bony chin and a weak post-incisive pla-
num; and the teeth are differentiated by the
weakly defined buccal grooves of the maxillary
premolars, the weakly developed median lingual
ridge of the mandibular canine, and the small
absolute size of the postcanine dentition. These
exact differences also align Au. sediba with the
genusHomo (see SOM text S2 for hypodigms used
in this study). However, we consider Au. sediba
to be more appropriately positioned within
Australopithecus, based on the following cranio-
dental features: small cranial capacity, pronounced
glabelar region, patent premaxillary suture,
moderate canine jugum with canine fossa, small
anterior nasal spine, steeply inclined zygomati-
coalveolar crest, high masseter origin, moderate
development of the mesial marginal ridge of the
maxillary central incisor, and relatively closely
spaced premolar and molar cusps.

Postcranially, Au. sediba is similar to other
australopiths in its small body size, its relatively

long upper limbs with large joint surfaces, and
the retention of apparently primitive charac-
teristics in the upper and lower limbs (table S2).
Au. sediba differs from other australopiths, but
shares with Homo a number of derived features
of the os coxa, including increased buttressing of
the ilium and expansion of its posterior portion,
relative reduction in the distance between the
sacroiliac and hip joints, and reduction of dis-
tance from the acetabulum to the ischial tuberos-
ity. These synapomorphies with Homo anticipate
the reorganization of the pelvis and lower limb in
H. erectus and possibly the emergence of more
energetically efficient walking and running in
that taxon (17). As with the associated cranial
remains, the postcranium of Au. sediba is defined
not by the presence of autapomorphic features
but by a unique combination of primitive and
derived traits.

Cranium. The cranium is fragmented and
slightly distorted. The minimum cranial capacity
of MH1 is estimated at 420 cm3 (SOM text S4).
The vault is ovoid, with transversely expanded,
vertically oriented parietal walls. The widely
spaced temporal lines do not approach the
midline. Postorbital constriction is slight. The
weakly arched supraorbital torus is moderately
developed and laterally extended, with sharply
angled lateral corners and a weakly defined
supratoral sulcus. A robust glabelar region is
evident, with only a faint depression of the
supraorbital torus at the midline. The frontal
process of the zygomatic faces primarily laterally
and is expanded medially but not laterally. The
zygomatic prominence does not show antero-
lateral expansion. The zygomatics are weakly
flared laterally, resulting in an uninterrupted
frontal profile of the facial mask that is squared
superiorly and tapered inferiorly. The zygomat-
icoalveolar crests are long, straight, and steep-
ly inclined, resulting in a high masseter origin.
The root of the zygomatic begins at the anterior
margin of M1. The nasal bones are widened
superiorly, become narrowest about one-third
of the way down, and flare to their widest extent
at their inferior margin. The nasal bones are
elevated as a prominent ridge at the internasal
suture, with an increasingly anterior projection
inferiorly. The bone surface of the maxilla re-
treats gently away from the nasal aperture lat-
erally, resulting in an everted margin of the
superolateral portion of the aperture relative to
the infraorbital region. The inferolateral portion
of the nasal aperture becomes bluntly rounded.
The infraorbital region is slightly convex (18)
and is oriented at an approximately right angle
to the alveolar plane. There is a trace of a pre-
maxillary suture near the superolateral margin
of the nasal aperture. Prominent canine juga
delineate moderately developed canine fossae.
Anterior pillars are absent. The inferior margin
of the nasal aperture is marked by a stepped
nasal sill and a small but distinct anterior nasal
spine. The subnasal region is straight in the cor-
onal plane and only weakly projecting relative

Fig. 2. Associated skeletal elements of MH1 (left) and MH2 (right), in approximate anatomical position,
superimposed over an illustration of an idealized Au. africanus skeleton (with some adjustment for
differences in body proportions). The proximal right tibia of MH1 has been reconstructed from a natural
cast of the proximal metaphysis.
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to the facial plane. The face is mesognathic.
The palate is consistently deep along its entire
extent, with a parabolic dental arcade.

Mandible. Descriptions apply to the more
complete juvenile (MH1) mandible unless other-
wise stated. The nearly vertical mandibular sym-
physis presents a weak lateral tubercle, resulting
in a slight mental trigone, and a weak man-
dibular incurvation results in a slight mentum
osseum. The post-incisive planum is weakly
developed and almost vertical. Both mandibular
corpora are relatively gracile, with a low height
along the alveolar margin. The extramolar sulcus
is relatively narrow in both mandibles. In MH1,
a moderate lateral prominence displays its
greatest protrusion at the mesial extent of M2,
with a marked decrease in robusticity to P4; in
MH2 the moderate lateral prominence shows
its greatest protrusion at M3, with a marked
decrease in robusticity to M2. The alveolar prom-
inence is moderately deep with a notable medial
projection posteriorly. The anterior and posterior
subalveolar fossae are continuous. The ramus
of MH1 is tall and narrow, with nearly parallel,
vertically oriented anterior and posterior bor-
ders; the ramus of MH2 is relatively broader,
with nonparallel anterior and posterior borders
(fig. S2). The mandibular notch is relatively deep
and narrow in MH1 and more open in MH2.
The coronoid extends farther superiorly than
the condyle. The condyle is mediolaterally broad
and anteroposteriorly narrow. The endocondyloid
buttress is absent in MH1, whereas in MH2 a
weak endocondyloid buttress approaches the
condyle without reaching it.

Dental size and proportions. The dentition
of the juvenile (MH1) is relatively small, whereas
preserved molars of the adult (MH2) are even
smaller (Fig. 3 and fig. S4). For MH1, the
maxillary central incisor is distinguishable only
from the reduced incisors of Au. robustus. The
maxillary canine is narrower than all canines of
Au. africanus except TM 1512, whereas the
mandibular canine falls well below the range of
Au. africanus. Premolars and molars are at the
lower end of the Au. africanus range and within
that of H. habilis–H. rudolfensis and H. erectus.
Molar dimensions of the adult individual (MH2)
are smaller than those of Au. africanus, are
at or below the range of those of H. habilis–
H. rudolfensis, and are within the range of those
ofH. erectus. Au. sedibamirrors the Au. africanus
pattern of maxillary molars that increase slightly
in size posteriorly, though it differs in that the
molars tend to be considerably larger in the latter
taxon. Conversely, the Au. sediba pattern varies
slightly from that seen in specimens KNM-ER
1813, OH 13, and OH 65 andH. erectus, where-
in the molars increase from M1 to M2 but then
decrease to M3. In broad terms, the teeth of
Au. sediba are similar in size to teeth of speci-
mens assigned to Homo but share the closely
spaced cusp apices seen in Australopithecus.

Postcranium. Preserved postcranial remains
of Au. sediba (table S1) denote small-bodiedIte

m
Me

as
ure

me
nt

de
scr

ipt
ion

in
(6)

Me
as
ure

me
nt

Au
.

afa
ren

sis
Au

.
afr

ica
nu

s
Au

.
sed

iba
H.

ha
bil

is
H.

rud
olf

en
sis

H.
ere

ctu
s

Au
.

ae
thi

op
icu

s
Au

.
bo

ise
i

Au
.

rob
us
tus

41
98

In
te
rc
an
in
e
di
st
an
ce

26
30

30
30

33
31

–
29

27
42

88
Pa
la
te

br
ea
dt
h
(e
km

-e
km

)
68

64
63

70
80

66
83

82
67

43
14

1
M
an
di
bu
la
r
sy
m
ph
ys
is
he
ig
ht

39
38

32
27

36
34

–
47

42
44

14
2

M
an
di
bu
la
r
sy
m
ph
ys
is
de
pt
h

60
20

19
19

24
19

–
28

25
45

14
7

M
an
di
bu
la
r
co
rp
us

he
ig
ht

at
P 4

34
33

28
30

38
30

–
42

38
46

14
8

M
an
di
bu
la
r
co
rp
us

de
pt
h
at

P 4
19

21
18

20
22

19
–

28
24

47
14

9
Cr
os
s-
se
ct
io
na
l
ar
ea

at
P 4

(c
al
cu
la
te
d
as

an
el
lip
se
)

51
1

55
8

38
2

42
7

65
3

45
8

–
91

0
70

9
48

15
0

M
an
di
bu
la
r
co
rp
us

he
ig
ht

at
M
1

33
32

28
29

36
30

35
41

37
49

15
1

M
an
di
bu
la
r
co
rp
us

de
pt
h
at

M
1

19
21

18
20

23
20

26
28

26
50

15
2

Cr
os
s-
se
ct
io
na
l
ar
ea

at
M
1
(c
al
cu
la
te
d
as

an
el
lip
se
)

48
8

53
2

39
6

42
1

66
7

46
9

71
5

91
3

75
9

51
15

4
M
an
di
bu
la
r
co
rp
us

he
ig
ht

at
M
2

31
31

25
31

36
30

–
41

35
52

15
5

M
an
di
bu
la
r
co
rp
us

de
pt
h
at

M
2

22
25

22
23

26
21

–
31

28
53

15
6

Cr
os
s-
se
ct
io
na
l
ar
ea

at
M
2
(c
al
cu
la
te
d
as

an
el
lip
se
)

53
6

61
2

43
6

53
7

74
5

50
4

–
98

0
77

0
54

16
2

H
ei
gh
t
of

m
en
ta
l
fo
ra
m
en

re
la
tiv
e
to

al
ve
ol
ar

m
ar
gi
n

20
19

13
13

17
13

–
20

20
55

M
ax
ill
ar
y
in
ci
so
r
cr
ow

n
ar
ea

(I1
+
I2
)

14
3

13
5

10
9

13
2

13
7

13
6

–
11

7
10

9
56

M
ax
ill
ar
y
ca
ni
ne

cr
ow

n
ar
ea

10
7

10
4

79
95

11
8

96
–

76
79

57
M
ax
ill
ar
y
po
st
ca
ni
ne

cr
ow

n
ar
ea

71
3

86
8

73
1

75
5

82
9

61
7

–
10

12
94

1
58

M
an
di
bu
la
r
ca
ni
ne

cr
ow

n
ar
ea

87
95

68
83

–
79

–
72

61
59

M
an
di
bu
la
r
m
ol
ar

cr
ow

n
ar
ea

55
0

65
1

53
6

56
5

66
8

46
6

–
78

1
67

8
60

M
ax
ill
ar
y
in
ci
so
r
to

po
st
ca
ni
ne

ra
tio

20
.0

15
.6

14
.9

17
.4

16
.6

22
.1

–
11

.5
11

.6
61

M
ax
ill
ar
y
ca
ni
ne

to
po
st
ca
ni
ne

ra
tio

15
.0

11
.9

10
.8

12
.6

14
.2

15
.5

–
7.
5

8.
4

62
M
an
di
bu
la
r
ca
ni
ne

to
m
ol
ar

ra
tio

15
.8

14
.6

12
.7

14
.6

–
16

.7
–

9.
2

9.
0

www.sciencemag.org SCIENCE VOL 328 9 APRIL 2010 201

RESEARCH ARTICLES

 o
n 

F
eb

ru
ar

y 
15

, 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


hominins that retain an australopith pattern of
long upper limbs, a high brachial index, and
relatively large upper limb joint surfaces
(table S2). In addition to these aspects of limb
and joint proportions, numerous other features
in the upper limb are shared with sibling species
of Australopithecus (to the exclusion of later
Homo), including a scapula with a cranially
oriented glenoid fossa and a strongly developed
axillary border; a prominent conoid tubercle on
the clavicle, with a pronounced angular margin;
low proximal-to-distal humeral articular propor-
tions; a distal humerus with a marked crest for
the brachioradialis muscle, a large and deep
olecranon fossa with a septal aperture, and a
marked trochlear/capitular keel (19); an ulna
with a pronounced flexor carpi ulnaris tubercle;
and long, robust, and curved manual phalanges
that preserve strong attachment sites for the
flexor digitorum superficialis muscle.

Numerous features of the hip, knee, and ankle
indicate that Au. sediba was a habitual biped. In
terms of size and morphology, the proximal and
distal articular ends of the femur and tibia fall
within the range of variation of specimens
attributed to Au. africanus. However, several
derived features in the pelvis link the Malapa
specimens with later Homo. In the os coxa (Fig.
4), Au. sediba shares with Homo a pronounced
acetabulocristal buttress; a more posterior posi-
tion of the cristal tubercle; a superoinferiorly
extended posterior iliac blade, with an expanded
retroauricular area; a sigmoid-shaped anterior in-
ferior iliac spine; a reduced lever arm for weight
transfer between the auricular surface and the
acetabulum; an enlarged and rugose iliofemoral
ligament attachment area; a tall and thin pubic
symphyseal face; and a relatively short ischium
with a deep and narrow tuberoacetabular sulcus.
These features are present in taxonomically un-

assigned postcranial remains from Koobi Fora
(KNM-ER 3228) and Olduvai Gorge (OH 28),
which have been argued to represent earlyHomo
(20), as well as in earlyHomo erectus (21). An os
coxa from Swartkrans (SK 3155) has been con-
sidered by some to also represent early Homo
(22) but can be seen to possess the australopith
pattern in most of these features. In addition,
Au. sediba shares with later Homo the human-
like pattern of low humeral-to-femoral diaph-
yseal strength ratios, in contrast to the ape-like
pattern seen in the H. habilis specimen OH 62
(table S2).

Although aspects of the pelvis are derived, the
foot skeleton is more primitive overall, sharing
with other australopiths a flat talar trochlea
articular surface with medial and lateral margins
with equal radii of curvature, and a short, stout,
and medially twisted talar neck with a high
horizontal angle and a low neck torsion angle

Fig. 3. Dental size of a selection of Au. sediba teeth compared to other early
hominin taxa; see fig. S4 for additional teeth. Dental measurements were
taken as described by Wood (6). Owing to small sample sizes, H. habilis and
H. rudolfensis were combined. (A) Upper central incisor mesiodistal (MD)
length. (B) Upper canine MD length. (C) Lower canine MD length. (D) Square
root of calculated [MD × BL (BL, buccolingual)] upper third premolar area.
(E) Square root of calculated (MD × BL) upper second molar area. (F)
Square root of calculated (MD × BL) lower second molar area. Measures
were taken on original specimens by D.J.D. for Au. africanus, Au. robustus,

and Au. sediba. Measurements for Au. afarensis, H. habilis, H. rudolfensis,
and H. erectus are from (6). P4 is not fully erupted on the right side of MH1,
therefore measures of the maxillary postcanine dentition are presented for
the left side only. Dental metrics for Au. sediba are as follows (MD, BL, in
millimeters): Maxillary: MH1: RI1 10.1, 6.9; LI2 7.7 (damaged), 5.1; RC
9.0, 8.8; LP3 9.0, 11.2; LP4 9.2, 12.1; LM1 12.9, 12.0; LM2 12.9, 13.7;
LM3 13.3, 14.1; MH2: RM3 11.3, 12.9. Mandibular: MH1: LC 8.0, 8.5; RM1
12.5, 11.6; RM2 14.4, 12.9; RM3 14.9, 13.8; MH2: RM1 11.8, 11.1; RM2
14.1, 12.2; RM3 14.2, 12.7; LM3 14.1, 12.5.
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(table S2 and fig. S5). The calcaneus is markedly
primitive in its overall morphology: the bone is
strongly angled along the proximodistal axis,
with the point of maximum inflexion occurring at
an enlarged peroneal trochlea; the lateral plantar
tubercle is lacking; the calcaneal axis is set about
45° to the transverse plane; and the calcaneocu-
boid facet is vertically set and lacks an expanded
posterior projection for the beak of the cuboid
(23).

Discussion. The age and overall morpholo-
gy of Au. sediba imply that it is most likely
descended from Au. africanus, and appears more
derived toward Homo than do Au. afarensis, Au.
garhi, and Au. africanus. Elsewhere in South
Africa, the Sterkfontein cranium Stw 53, dated to
2.0 to 1.5Ma, is generally considered to represent
either H. habilis (10, 24, 25) or perhaps an
undiagnosed form of early Homo (26). It played
an important role in the assignment of OH 62 to
H. habilis (27). However, the derived cranioden-
tal morphology of Au. sediba casts doubt on the
attribution of Stw 53 to early Homo [see also
(28)]: Stw 53 appears to be more primitive than
MH1 in retaining closely spaced temporal lines;
marked postorbital constriction; a weakly devel-
oped supraorbital torus; narrow, nonprojecting
nasal bones; anterior pillars; marked nasoalveolar
prognathism; medial and lateral expansion of the
frontal process of the zygomatic bone; and
laterally flared zygomatics. If Stw 53 instead
represents Au. africanus, the assignment of OH
62 to H. habilis becomes tenuous. Attribution of
the partial skeleton KNM-ER 3735 to H. habilis
was tentatively based, in part, on a favorable
comparison with OH 62 and on the hypothesis
that there were no other contemporaneous non-

robust australopith species to which it could be
assigned in East Africa (29). As a result, the
interpretation of KNM-ER 3735 as H. habilis
also becomes uncertain.

The phylogenetic significance of the co-
occurrence of derived postcranial features in
Au. sediba,H. erectus, and a sample of isolated
fossils generally referred to Homo sp. indet.
(table S2) is not clear: The latter might repre-
sent early H. erectus, it might sample the post-
cranium of H. rudolfensis (which would then
imply an evolutionary pathway fromAu. sediba to
H. rudolfensis to H. erectus), or it might represent
the postcranium of H. habilis [which would sug-
gest that OH 62 and KNM-ER 3735 (two speci-
mens with ostensibly more primitive postcranial
skeletons) do not belong in this taxon]. If the lat-
ter possibility holds, it could suggest a phyloge-
netic sequence from Au. sediba to H. habilis to
H. erectus. Conversely, although the overall post-
cranial morphology of Au. sediba is similar to that
of other australopiths, a number of derived features
of the os coxa align the Malapa hominins with
later Homo (H. erectus) to the exclusion of other
australopiths. Additionally, Au. sediba shares a
small number of cranial traits with H. erectus that
are not exhibited in the H. habilis–H. rudolfensis
hypodigm, including slight postorbital constriction
and convexity of the infraorbital region (18).
Following on this, MH1 compares favorably with
SK 847 (H. erectus) in the development of the
supraorbital torus, nasal bones, infraorbital region,
frontal process of the zygomatic, and subnasal
projection. However, MH1 differs from SK 847 in
its relatively smaller size, the robust glabelar re-
gion, the weakly developed supratoral sulcus, the
steeply inclined zygomaticoalveolar crests with a

high masseter origin, and the moderate canine
juga, all features aligning MH1 with Australopith-
ecus. It is thus not possible to establish the precise
phylogenetic position of Au. sediba in relation to
the various species assigned to early Homo. We
can conclude that combined craniodental and post-
cranial evidence demonstrates that this new spe-
cies shares more derived features with earlyHomo
than does any other known australopith species
(Table 1 and table S2) and thus represents a candi-
date ancestor for the genus, or a sister group to a
close ancestor that persisted for some time after the
first appearance of Homo.

The discovery of a <1.95-million-year-old
(16) australopith that is potentially ancestral to
Homo is seemingly at odds with the recovery of
older fossils attributed to the latter genus (5) or of
approximately contemporaneous fossils attribut-
able to H. erectus (6, 30). However, it is unlikely
that Malapa represents either the earliest or the
latest temporal appearance of Au. sediba, nor
does it encompass the geographical expanse that
the species once occupied. We hypothesize that
Au. sediba was derived via cladogenesis from
Au. africanus (≈3.0 to 2.4 Ma), a taxon whose
first and last appearance dates are also uncertain
(31). The possibility that Au. sediba split from
Au. africanus before the earliest appearance of
Homo cannot be discounted.

Although the skull and skeleton of Au. sediba
do evince derived features shared with early
Homo, the overall body plan is that of a hominin
at an australopith adaptive grade. This supports
the argument, based on endocranial volume and
craniodental morphology, that this species is
most parsimoniously attributed to the genus
Australopithecus. The Malapa specimens dem-

Fig. 4. Representative ossa coxae, in lateral view, from left to right, of Au.
afarensis (AL 288-1), Au. africanus (Sts 14), Au. sediba (MH1), and H. erectus
(KNM-WT 15000). The specimens are oriented so that the iliac blades all lie in the
plane of the photograph (which thus leads to differences between specimens in
the orientation of the acetabula and ischial tuberosities). MH1 possesses derived,
Homo-like morphology compared to other australopithecines, including a relative
reduction in the weight transfer distance from the sacroiliac (yellow) to hip (circle)

joints; expansion of the retroauricular surface of the ilium (blue arrows)
(determined by striking a line from the center of the sphere representing the
femoral head to the most distant point on the posterior ilium; the superior arrow
marks the terminus of this line, and the inferior arrow marks the intersection of
this line with the most anterior point on the auricular face); narrowing of the
tuberoacetabular sulcus (delimited by yellow arrows); and pronouncement of the
acetabulocristal (green arrows) and acetabulosacral buttresses.
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onstrate that the evolutionary transition from a
small-bodied and perhaps more arboreal-adapted
hominin (such as Au. africanus) to a larger-
bodied, possibly full-striding terrestrial biped
(such asH. erectus) occurred in a mosaic fashion.
Changes in functionally important aspects of
pelvic morphology, including a reduction of the
sacroacetabular weight-bearing load arm and
enhanced acetabulosacral buttressing (reflect-
ing enhancement of the hip extensor mecha-
nism), enlargement of the iliofemoral ligament
attachment (reflecting a shift in position of the
line of transfer of weight to behind the center of
rotation of the hip joint), enlargement of the
acetabulocristal buttress (denoting enhancement
of an alternating pelvic tilt mechanism), and re-
duction of the distance from the acetabulum to
the ischial tuberosity (reflecting a reduction in the
moment arm of the hamstring muscles) (20, 32)
occurred within the context of an otherwise aus-
tralopith body plan, and seemingly before an
increase in hominin encephalization [in contrast
to the argument in (33)]. Relative humeral and
femoral diaphyseal strength measures (table S2)
also suggest that habitual locomotor patterns in
Au. sediba involved a more modern human-like
mechanical load-sharing than that seen in the
H. habilis specimen OH 62 (34, 35). Mosaic evo-
lutionary changes are mirrored in craniodental
morphology, because the increasinglywide spacing
of the temporal lines and reduction in post-
orbital constriction that characterize Homo first
appeared in an australopith and before significant
cranial expansion. Moreover, dental reduction,
particularly in the postcanine dentition, preceded
the cuspal rearrangement (wide spacing of post-
canine tooth cusps) that marks early Homo.

The pattern of dental eruption and epiphyseal
fusion exhibited by MH1 indicates that its age at
death was 12 to 13 years by human standards,
whereas inMH2 the advanced degree of occlusal
attrition and epiphyseal closure indicates that it
had reached full adulthood (SOM text S1). Al-
though juvenile, MH1 exhibits pronounced devel-
opment of the supraorbital region and canine juga,
eversion of the gonial angle of the mandible, and
large rugose muscle scars in the skeleton, all in-
dicating that this was a male individual. And, al-
though fully adult, the mandible and skeleton of
MH2 are smaller than in MH1, which, combined
with the less rugose muscle scars and the shape of
the pubic body of the os coxa, suggests that MH2
was a female. In terms of dental dimensions,MH1
has mandibular molar occlusal surface areas that
are 10.7% (M1) and 8.1% (M2) larger than those
of MH2. Dimorphism in the postcranial skeleton
likewise is not great, though the juvenile status of
MH1 tends to confound efforts to assess adult
body size. The diameter of the proximal epiphysis
for the femoral head of MH1 (29.8 mm) is ap-
proximately 9.1% smaller than the superoinferior
diameter of MH2's femoral head (32.7 mm). It is
likely that MH1 would have experienced some
appositional increase in joint size before matu-
rity, thus this disparity would probably have de-

creased somewhat. The distal humeral epiphysis
of MH1 is fully fused and its articular breadth
(35.3 mm) is only marginally larger than that of
MH2 (35.2 mm). Thus, although the dentition
and postcranial skeleton are at odds in the de-
gree of apparent size differences, the overall
level of dimorphism, if these sex attributions are
correct, appears slight in the Malapa hominins
and was probably similar to that evinced by mod-
ern humans.
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CorreCtions & CLarifiCations

www.sciencemag.org    sCiEnCE    erratum post date    17 deCemBer 2010 

Erratum
Research Articles: “Australopithecus sediba: A new species of Homo-like Australopith 
from South Africa” by L. R. Berger et al. (9 April, p. 195). In the legend of Fig. 3, the 
mesiodistal diameter of the RM2 of the mandible of the adult individual MH2 should be 
13.1 mm (not 14.1 mm). In Fig. 4, the specimen number of the pelvis of Australopithe-
cus afarensis (Lucy) should be A.L. 288-1 (not A.L. 228-1). These errors do not affect the 
Research Article’s conclusions.

CorreCtions & CLarifiCations

Post date 17 December 2010
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Readers’ Picks

Your Breakthrough Nominations
EVERY YEAR, THE EDITORS AT SCIENCE GET TOGETHER TO LOOK 
back and decide which scientifi c advances merit the title of Breakthrough 
of the Year. This year, we also asked you, our readers, to weigh in with 
your nominations on our Web site. You responded im mediately with a 
wide range of worthy ideas, and your comments were still pouring in as 
the magazine went to press. 

As it turned out, almost all of your nominations overlapped with our 
selections. However, you felt that our number-one pick, the fi rst quan-
tum machine, was a distant dark horse to the synthetic-biology results we 
deemed a runner-up. 

You also pointed to some results that didn’t make our list. Of these 
nominations, the overwhelming favorite was the arsenic-based bac terium 
that Science published online on 2 December. The News editors who 
selected our breakthroughs agree that the idea of a life form with arsenic 
in its DNA is, as one of you put it, “effi ng badass!” But because the paper 
ran late in the year, we feel it is prudent to allow for further analysis before 
giving it a nod. Other recent results you felt warranted attention, such as 
the apparent reversal of aging in genetically engineered mice by research-
ers at Harvard University, fell into our wait-and-see category as well. 

CERN physicists’ success in trapping atoms of antihydrogen, reported 
in November, also justifi ably impressed readers. We passed it over only 
because it’s sure to be quickly overshadowed by follow-up experiments to 
measure critical properties of the mysterious antimatter. 

The rest of your suggestions were all over the scientifi c map. They 
include basic research (the crystal structure of the eukaryotic ribosome and 
quantum entanglement in solid-state circuits); far-fl ung results such as the 
detection of free oxygen on Saturn’s moon Rhea (“totally amazing”); vari-
ous transformations of stem cells; and mind-boggling speculations from 
theoretical physics (the holographic universe). Only a couple of inven-
tions crept in, notably a mechanical walker for paralyzed people. One tech-
minded reader asked, “Is there any way we can sneak the commercial real-
ization of memristors in here?” (That’s not Science’s kind of breakthrough, 
but you could try Business Week.) 

We thank the many readers who participated in our Breakthrough 
discussion. You can read all the suggestions sent by your fellow read-
ers, including those sent after our press deadline, at Science’s Talk page 
(talk.sciencemag.org) and the Facebook page for our online news outlet, 
ScienceNOW.  SCIENCE NEWS STAFF

China’s Plan Flawed 

But Courageous

IN HER NEWS FOCUS STORY “HAS CHINA OUT-
grown the one-child policy?” (17 September, 

p. 1458), M. Hvistendahl explores the con-

sequences of China’s fertility policies. 

Overall, the story presents the one-child pol-

icy in a negative light, buttressed by statisti-

cal data, such as the current gender ratio of 

119:100 at birth and the projected graying of 

the Chinese population. These data are accu-

rate but misleadingly incomplete. The single 

most relevant statistic is the one that drove 

the original decision to implement the pol-

icy: the total population of China as a func-

tion of time. Even with the reduced popu-

lation growth that came with the one-child 

policy and with China’s rapid shift toward 

an urbanized and export-driven economy, 

those numbers are sobering. In 1960, China 

had a population of 646 million; in 1980, it 

was 981 million; by 2000, it had grown to 

1.267 billion; and in 2010, it is projected 

to be 1.354 billion (1). In the past 50 years, 

China’s population has increased by an 

amount equal to or greater than the popu-

lation of all of Central and North America 

(~500 million). Without defending or criti-

cizing the one-child policy, we can at least 

recognize that it stands as a brave attempt by 

the inhabitants of an overcrowded planet to 

create a more livable future for our children 

and grandchildren. 
JEREMY NATHANS

Department of Molecular Biology and Genetics, The Johns 
Hopkins Medical School, Baltimore, MD 21205, USA. 
E-mail: jnathans@jhmi.edu
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Regulating Genetic Tests: 

Account for Benefi ts
THE POLICY FORUM “REGULATING DIRECT-TO-
consumer personal genome testing” (A. L. 

McGuire et al., 8 October, p. 181) perpetu-

ates the myth that risk-based stratifi cation 

represents the best way to regulate direct-to-

consumer genome tests. In fact, risk-based 

regulation fails to account for tolerability of 

risk (1), where the greater the expected ben-

efi t, the greater should be the tolerability 

of risk. The proposed method would likely 

delay access to all test results deemed high 

risk, regardless of the potential benefi t of 

those results to the patient. 

Sophisticated regulation based on toler-

ability of risk reduces the approval time and 

evidentiary requirements for the products 

with the highest potential for benefit. The 

U.S. Food and Drug Administration (FDA) 

already applies this strategy by granting an 

accelerated approval process for life-saving 

drugs, yet the agency often appears to take the 

opposite approach for diagnostic tests. This is 

an important issue as FDA considers expand-

ing its reach into tests developed in labora-

tories. For many direct-to-consumer genetic 

tests, it is the absence of actionable benefi t 

that appropriately reduces the tolerability of 

risk, not a high level of risk in absolute terms. 

The Policy Forum should have more explic-

itly stated that for patients, the harm caused 

by delaying a new test can be greater than the 

benefi t of the regulation itself. 
STEPHEN A. WILLIAMS

SomaLogic, 2945 Wilderness Place, Boulder, CO 80301, 
USA. E-mail: swilliams@somalogic.com
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Regulating Genetic Tests: 

Who Owns the Data?
DIRECT-TO-CONSUMER (DTC) GENETIC TEST-
ing is not as dangerous as A. L. McGuire et 

al. suggest (“Regulating direct-to-consumer 

personal genome testing,” Policy Forum, 

8 October, p. 181). The belief that genetic 

information will compel consumers to 

behave unreasonably is unfounded. 

Unlike the classical genetic tests that 

look for rare genetic abnormalities (such 

as Huntington’s disease), genetic tests sold 

directly to consumers cannot diagnose a 

disease. They merely provide information 

about DNA sequence variations, or single-

nucleotide polymorphisms (SNPs). Certain 

SNPs can be found more often among indi-

viduals with a particular disease or condi-

tion. For example, one particular combina-

tion of two SNPs in the APOE gene occurs 

3 to 20 times more frequently in individu-

als with Alzheimer’s (1). Consequently, a 

person with this particular combination of 

SNPs could be at a greater risk to develop 

Alzheimer’s; the mere presence of these 

SNPs is not diagnostic.

There is no reason to require government 

approval before allowing a person to see 

his or her own genetic information. After 

receiving results that indicate a health-

related risk, a person will likely see a doctor 

to determine the next appropriate step. This 

action would be no different from a per-

son’s response to learning that he or she has 

increased blood pressure, cholesterol, or 

weight. Should DTC sales of weight scales 

be regulated too?

The real question is what will happen if 

governments, big pharma, committees, and 

other faceless bodies gain control of our 

genetic information. College admissions 

based on genotype? Advertising geared to 

those with a particular SNP? This is a ques-

tion for the ethicists to ponder.
ANDRIUS BASKYS

Department of Psychiatry and Human Behavior, Univer-
sity of California Irvine, Irvine, CA 92697, USA. E-mail: 
abaskys@uci.edu
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Response
IN OUR POLICY FORUM “REGULATING DIRECT-
to-consumer personal genome testing” 

(8 October, p. 181), we recommend a risk-

stratifi ed regulatory approach for direct-to-

consumer (DTC) genetic tests. If tests are 

low risk (as existing data indicate for the vast 

majority of tests sold DTC ) then the over-

sight should be minimal and should focus on 

ensuring that consumers have accurate and 

truthful information. Only high-risk tests 

would be subject to greater oversight and 

enhanced scrutiny by agencies such as the 

U.S. Food and Drug Administration (FDA). 

Williams argues that this type of risk-

based strategy fails to account for the impact 

of benefi t on the tolerability of risk. We agree 

that benefi t is an important consideration. A 

high-risk test that has the potential to ben-

efi t consumers signifi cantly, and thus has 

proven therapeutic utility, should be cleared 

or approved for distribution. In fact, the sort 

of external data-driven review that would 

be required to assess benefit is precisely 

what the FDA would provide when evaluat-

ing a high-risk new test product. However, 

the primary goal of regulatory oversight is 

to ensure consumer safety, so regardless of 

the potential for benefi t, a test that poses sig-

nifi cant risk ought to be subject to external 

review. The data required for the review in 

this circumstance allow regulators to take 

into account both risks and benefi ts. 

Williams also argues that delayed access 

to a new test may prevent the introduction of 

life-saving diagnostics. We are not aware of 

any evidence that life-saving genetic tests, 

such as those used in newborn screening, are 

being delayed, but we agree that waiting for 

robust effectiveness data could effectively 

regulate DTC companies out of existence 

and should be avoided. We therefore believe 

that the FDA’s premarket oversight should 

focus on the legitimacy of claims made 

and that there should be enhanced post-

market data collection and surveillance. 

This approach is quite fl exible in terms of 

the amount and type of evidence required 

for a test to move to market. It is more  hos-

pitable to innovative tests than is the case 

in many other countries, such as Germany, 

where DTC testing has been banned.

Baskys believes that all individuals have 

a right to receive their genetic information. 

We do not necessarily disagree. We sim-

ply argue that consumers need access to 

accurate and truthful information in order 

to make informed decisions. For tests that 

have the potential to infl uence important 

medical decisions, this includes contextual 

information about the individual’s other 

risk factors, including family history, envi-

ronmental exposures, and biological symp-

toms. We agree that there is a dearth of 

scientific evidence on the potential risks 

associated with receiving genetic infor-

mation DTC; there is also a lack of evi-

dence of the potential benefi ts. As noted by 

Baskys, there are few, if any, DTC tests that 

have as much predictive value as a blood 

pressure test or a weight scale.  Indeed, 

available evidence tells us that genetic risk 

information does little to motivate healthy 

behavior change (1). Given this reality, it 

seems appropriate that the vast majority of 

Letters to the Editor
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general interest. They can be submitted through 
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mail (1200 New York Ave., NW, Washington, DC 
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receipt, nor are authors generally consulted before 
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DTC tests will not require signifi cant over-

sight, as per our stratifi ed approach. 
AMY L. MCGUIRE,1* BARBARA J. EVANS,2 
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lege of Medicine, Houston, TX 77030, USA. 2Health Law and 
Policy Institute, University of Houston Law Center, Houston, 
TX 77204, USA. 3Health Law Institute, University of Alberta, 
Edmonton, AB T6G 2H5, Canada. 4Department of Bioethics 
and Humanities, University of Washington School of Medi-
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CORRECTIONS AND CLARIFICATIONS

Books et al.: “How neuromythologies support sex role 
stereotypes” by D. F. Halpern (3 December, p. 1320). An 
error was introduced during the production process. Refer-
ence 5 should read: R. A. Lippa, M. L. Collaer, M. Peters, 
Arch. Sex. Behav. 39, 997 (2010).

Reports: “A low-magnetic-fi eld soft gamma repeater” 
by N. Rea et al. (12 November, p. 944). Paolo Esposito’s 

affi liation contained an error. He is at the Osservatorio 
Astronomico di Cagliari. The affi liation has been corrected 
in the HTML version online.

Random Samples: “What, us bitter?” (8 October, p. 157). 
The accompanying photograph mistakenly showed a scene 
in the Swiss Alps, not the Pamir Mountains.

Research Articles: “Australopithecus sediba: A new 

species of Homo-like Australopith from South Africa” by 
L. R. Berger et al. (9 April, p. 195). In the legend for Fig. 
3, the mesiodistal diameter of the RM2 of the mandible 
of the adult individual MH2 should be 13.1 mm (not 
14.1 mm). In Fig. 4, the specimen number of the pelvis 
of Australopithecus afarensis (Lucy) should be A.L. 288-1 
(not A.L. 228-1). These errors do not affect the Research 
Article’s conclusions.

TECHNICAL COMMENT ABSTRACTS

Comment on “The Incidence of Fire in Amazonian Forests with Implications 
for REDD”

Jennifer K. Balch, Daniel C. Nepstad, Paulo M. Brando, Ane Alencar
Aragão and Shimabukuro (Reports, 4 June 2010, p. 1275) reported that fi res increase in agricultural frontiers 
even as deforestation decreases and concluded that these fi res lead to unaccounted carbon emissions under the 
United Nations climate treaty’s tropical deforestation and forest degradation component. Emissions from post-
deforestation management activities are, in fact, included in these estimates—but burning of standing forests is not.

Full text at www.sciencemag.org/cgi/content/full/330/6011/1627-b

Response to Comment on “The Incidence of Fire in Amazonian Forests with 
Implications for REDD”

Luiz E. O. C. Aragão and Yosio E. Shimabukuro
Balch et al. suggest that the increased fi re frequency reported in our study is principally due to post-deforestation 
activities. We present a new analysis demonstrating that for the majority of grid cells with positive fi re trends, there 
is a low likelihood that these trends have resulted exclusively from post-deforestation activities. We therefore con-
fi rm that fi res pose a growing threat to reducing emissions from deforestation and degradation (REDD) policies.

Full text at www.sciencemag.org/cgi/content/full/330/6011/1627-c
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